If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+24x+34=0
a = 3; b = 24; c = +34;
Δ = b2-4ac
Δ = 242-4·3·34
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-2\sqrt{42}}{2*3}=\frac{-24-2\sqrt{42}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+2\sqrt{42}}{2*3}=\frac{-24+2\sqrt{42}}{6} $
| 2(x+3)−3(4x−5)=−9 | | 1.6b=10 | | 9^2x-1(3^3x-1)=27^x+3 | | 12=(x+Y)(2) | | 4x-7(1+5x)=86 | | b=-73=-58 | | 2(7+3v)=5(v+6) | | y+-26=70 | | 17x-13=27-3x= | | G²+4g=21 | | 3m+2=11 | | j÷8=4 | | -1/2(p-4)=2 | | 10a+136=-8-2a | | 10000000000=100x+9867 | | 18m=2m^2 | | 3x+3=7x+23 | | -2(a-2)-(1-2a)=a+3+2a+3 | | 15w-4=49 | | D÷50=t | | (-6+1.5y)-6y=-15 | | 4x-10=6x-6 | | (5x+2)+(7x+11)+(13x-31)+(8x-19)+(10x-3)=540 | | -6(-3m-3)=126 | | 24-2b=b | | 2(-6+1.5y)+12=3y | | 23(3d−4)+100=54 | | 5x~2+8=-7 | | 5x-19x+1=-13x+18+9x | | 12x+32=110 | | x+1+6x=8 | | -224=7(3m-8) |